Enhancing Power System Resilience

Improving Power System Adaptation to Climate Change

Guo Zixuan, Senior Engineer
China Energy Engineering Group
Guangdong Electric Power Design Institute CO., Ltd
June, 2020
GEDI – a Leading Engineering Service Provider Throughout Entire Project Circle

POWER GENERATION
- **Coal-Fired** (25-1000MW)
- **Nuclear** (1000-1750MW)
- **Oil/Gas** (40-660MW)
- **Renewable Power** (Hydraulic, Wind, Biomass, Solar, Geothermal)

POWER TRANSMISSION & DISTRIBUTION
- (AC 110kV~1000kV, DC ±500kV~±1100kV)
- **Power System Planning**
- **Transmission and Distribution systems**
- **Substations**
- **Distribution Network Control**

BUILDING & INFRASTRUCTURE
- **Commercial Building and Public works**
- **Environment** (FGD, DE-NOX Plant, CO2 Capture, Waste Water)
- **Infrastructure** (Jetty, Seawater Desalination, Water Treatment, Road & Tunnel)
- **IT, Communication And automation**
Asia suffers most climate disasters causing system loss every year. GEDI proposes a whole-process proactive solution to enhance system Resilience.

Preliminary Planning Stage
Planning of Eco-Friendly and Robust Power System.

Construction Enhancement Stage
High Standard Construction and Reinforcement of Vital Network Devices to enhance system resilience.

Emergency Proactive Management
Applying High Level Technology to Realize a Proactive Emergency Management
Distributed Uninterrupted Power Generation – Emergency Power and Intelligent Energy

Based on the eco-power generation and power grid planning. Distributed Uninterrupted Power Generation can act as an emergency power resource when outage occurs, which can operate as a step-utilization intelligent power resource by the application of Natural Gas.

- Be accessed to distributed network directly
- Operate as a Black-Start Energy to main Power Grid
- Intelligent Power Source By Step-Utilization
GEDI has realized an intelligent energy circulation system based on distributed UPG to fully improve power efficiency.

Integrated Energy System in distributed power grid and micro-grid improving primary resource efficiency up to 80%

- The Red Sea, Saudi Arabia
- Koh Rong Island, Cambodia
- Guangzhou Pearl Industrial Park, China
- Shenzhen Low Carbon City, China
- Xiamen Multi-Industrial Park Energy Internet, China
- Shenyang Intelligent Energy Planning, China
In Guangzhou Industrial Park, GEDI constructed an intelligent energy system based on Distributed UPG, Photovoltaic, EV Charging and Energy Storage.

Reliability Enhancement
Based on distributed energy, reliability can be enhanced in case of climate disaster.

Efficiency Improvement
Distributed UPG can supply electricity and heat energy to improve primary efficiency up to 80%.

Load curve optimization
With Energy storage, the short peak load will be shaved to save cost of redundant investment of grid.

Black Start Source of Grid
UPG also serves as a black start resource to support main power grid as well.

Location: Guangzhou, China
Peak Load: 40MW
Manufacture: Tyres, Refrigerator, Air Conditioners
Energy Demand: Electricity, Heat
In Hainan with various Typhoon Disaster. GEDI has dedicated in the differentiated construction, which realized enhancement and economical performance.

Extreme Disaster Risk Analysis
- Typhoon Historical Data
- Ice Disaster Historical Data

Transmission Line Importance
- Grid Structure Analysis
- Power Flow Analysis
- Special Line as Train Crossing
Emergency Management System to Provide Proactive Solution in Advance to Reduce Disaster Influence
When extreme climate attacks, under application of emergency management system, power system can be recovered in shortest time period.

System Influenced
- Tripped Lines: 135
- Substation Outage: 73

Recovery for Rigid Customers in 1 hour
- 50% of the affected clients had been restored

Further Recovery in One Day
- Tripped Lines: 54
- Substation Outage: 3
- Clients Restored: 75%

Maximum Wind Speed: 135 mph
Influenced City: Macau, Hong Kong, Zhuhai, Guangzhou, etc.
Emergency Management provides proactive process preparing resources to recover the system in advance.

Disaster Impact Prediction

- **Level 7**
- **Level 10**

Equipment Losses
- Power line pole: 69

Interrupted Customs
- Total: 3450
- VIP: 3

Supply Need
- Wire: 10k
- Power line pole: 60

Response Team Need
- Personnel: 200
- Power Generator Car: 3

Precise Resource Dispatching

1. Resource Preparation
2. On-site Survey
3. Data Analysis
4. Decision Supporting

CHINA ENERGY ENGINEERING GROUP
GUANGDONG ELECTRIC POWER DESIGN INSTITUTE CO., LTD.

Power System Resilience | 10
Findings

• Facing various climate disaster to cause system loss, a planning-construction-management whole-process proactive solution is proposed to enhance system resilience.

• Distributed Uninterrupted Power Generation should be located in important customers such as data centre and industrial parks, step-utilization should be applied to improve power efficiency.

• In area with various typhoon disasters, an overall research of transmission line reinforcement is strongly proposed to realize enhancement and economical performance.

• Proactive emergency management based on internet technology providing disaster estimation, resource preparation, on-site survey and decision support can help recover system failure in the shortest time instead of reactive procedures.
Thanks.
To make energy more efficient, environment more beautiful.

Zixuan Guo, Senior Engineer of Power System

China Energy Engineering Group Guangdong Electric Power Design Institute CO., Ltd

http://www.en.gedi.com.cn/